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Probability distribution function of the temperature increment in isotropic turbulence
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The statistics of a temperature increment across a distance in the inertial range in isotropic
turbulence is discussed on the basis of the Obukhov-Corrsin similarity, the extensive use of the
Kolmogorov refined similarity hypothesis and the three-dimensional tetranomial Cantor set model
for isotropic turbulence with a passive advected scalar. The result compares well with available

experimental data.
PACS number(s): 47.27.—i, 05.45.+b, 02.50.—r

Although there are some models for isotropic turbu-
lence in which the probability density function (PDF) of
velocity increment across a distance in the inertial range
in isotropic turbulence has been discussed in a reasonable
way [1-3], the PDF of a temperature increment advected
in isotropic turbulence still seems to be difficult to ex-
plain by such a simple model. In fact, Jensen, Paladin,
and Vulpiani [4] tried a numerical approach using a joint
shell model of the Navier-Stokes equation and the ad-
vected scalar equation, instead of extending the random
B model for isotropic turbulence [5] they trust. Their
result for the PDF of a temperature increment seems
to be reasonable at least qualitatively, though missing a
comparison with experiment. However, as such a shell
model needs a considerable amount of computer work,
a simpler model approach would be more convenient if
it exists with enough reliability. On the other hand, a
dynamical method was proposed by Sinai and Yakhot
[6] to treat the PDF of temperature itself, and extended
(with some assumptions) by Ching [7] to predict the PDF
of a temperature increment between different times in
Rayleigh-Bénard convection. But in this method there is
an unknown function (which is considered to depend on
time separation 7), so that it should be searched empiri-
cally by some independent data.

Therefore a simple calculation is reported here, which
naturally arises from the multifractal model for isotropic
turbulence associated with a passive advected scalar re-
cently proposed by the author as the three-dimensional
(3D) tetranomial Cantor set model [8]. It is already
known that this explains temperature structure functions
very well in comparison with the experiment of Antonia
et al. [9]. We start by describing this model.

Let us introduce joint intermittency exponents u(g,p),
which implies joint scale similarity of energy dissipation
rate € and temperature dissipation rate x (per mass), as

((er/e)¥(xr /3a)?) = (r/1) 707, (1)

where a subscript means the scale, over a domain of which
these quantities are averaged, and a domain of scale r
should be included in that of scale [ (> 7). The angular
brackets denote an ensemble average. If the joint PDF
of e./e; = y and x,/x1 = z is known as p(y, z;7/l), we
may write

Ad LAl
©(g,p) = log, ( / / y92Pp(y, z; A~ t)dy dZ) , (2)
1] 1)
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where A is [/r and d is spatial dimension. The 3D tetra-
nomial Cantor set model is given by taking

P(y;zA7") = A[§(y — B)§(z — D) + 8(y — C)8(z — E)]
+(1/2 = X)[8(y — B)é(z - F)
+é(y - C)é(z - G) ®3)

as a natural extension of the 3D binomial Cantor set
model [10], in which A = 2'/¢ (we take here d = 3)
and B,C = 1+ (2#/9 — 1)Y/2 [p = p(2,0); p = 0.2 is
an accepted value]. From the consideration of temper-
ature structure functions, the set of values A = 0.1556,
D = 1.0669, E = 0.3576, F = 1.2, and G = 1.06 were
previously recommended [8].

Joint generalized dimensions D(q,p) are related with
1(g,p) as

u(g,p) = (¢—1)(p—1)D(g,p) + d(g+p—1). (4)

Then generalized dimensions of temperature dissipation
D(0,p) are given by setting ¢ = 0 in the above proce-
dure. We can see them thus obtained from our model in
Fig. 1 in comparison with Jensen, Paladin, and Vulpi-
ani’s numerical result. Both are in agreement at p = 2,
but elsewhere they deviate. In order to say which is bet-
ter, however, we would need a comparison with data of
accurate 3D direct numerical simulation, etc. [From the
mathematical point of view, the following is worth not-
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FIG. 1. Generalized dimensions of temperature dissipation
rate. The solid line shows the 3D tetranomial Cantor set
model [8]. The circles with error bars are the result of com-
putation by Jensen, Paladin, and Vulpiani [4] based on their
joint shell model equation.
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ing. In case the requirement of our model that 1(0.1) = 0
has been only approximately fulfilled, a locally divergent
behavior of D(0,p) can happen very near p = 1. This
behavior is solely due to such an approximation. But
this can be suppressed as much as we want by more ac-
curately forcing the set of parameters to give (0.1) = 0.
In fact, the behavior occurs in Fig. 1 in a negligibly slight
region covering p = 1. However, the PDF of a temper-
ature increment (described below) is entirely insensitive
to such an adjustment.]

According to Obukhov [11] and Corrsin [12], we may

IWAO HOSOKAWA 49

express the temperature increment as
T, = ”Tl/af:l/sxi/z (5)

based on the dimensional argument, where v is a nondi-
mensional variable but generally conditioned by r, e,,
and x,. Here, let us apply extensively the refined simi-
larity hypothesis (RSH) of Kolmogorov [13] and Obukhov
[14] in the form that v is independent of 7, €., and x4, as
the first approximation. Then, if the PDF of v is given
as P(v), the PDF of T, is written as

ps(T;) = / / PIT, (/3= /851/2)] /(r1/3y=1/8 1/ 2)p(y, 2: ) dy do. (6)

Here and hereafter r should read r/L (L is an integral
scale). When r — 1, p(y, z; ) goes towards 6(y — 1)6(z —
1) and then p3(T,) — P(T,). Although the theories of
Sinai and Yakhot [6] and Ching [7] do not necessarily
support it, we assume here that p3(7,) for r near 1 is
nearly Gaussian with zero mean for simplicity, just as well
as the PDF of the velocity increment [1-3], and then so is
P(v). We note that Eswaran and Pope’s direct numerical
simulation [15] is in favor of this assumption.

Of course, there have been several arguments that the
PDF of temperature itself is non-Gaussian and has an
exponential tail in the presence of mean (background)
temperature gradient, since Castaing et al. [16] found
that the PDF of temperature in Rayleigh-Bénard con-
vection was non-Gaussian for large Rayleigh numbers
(that belong to the hard turbulence regime). Pumir,
Shraiman, and Siggia [17] argued theoretically the occur-
rence of the exponential tail in such a case, and Jayesh
and Warhaft [18] and Gollub et al. [19] verified it experi-
mentally. But we cannot overlook the parts of the exper-
iments of Jayesh and Warhaft [18] and Thoroddsen and
Van Atta [20] for grid-generated turbulence, which showed
that the PDF of temperature itself is nearly Gaussian in
the absence of mean temperature gradient. Therefore it

is natural to restrict our treatment to such cases as these
authors treated. We also note that the nearly Gaussian
temperature PDF was recognized in a numerically simu-
lated decaying isotropic turbulence with a passive scalar
[21]. Our approach may be applicable to the soft turbu-
lence regime of Rayleigh-Bénard convection with Gaus-
sian PDF of temperature, but it is a future problem to
be taken up. [We avoid all the cases with the heat-
ing and cooling mechanism caused by an inserted (hot
and cold) temperature boundary condition, such that
there emerge wide, central turbulent regions with locally
vanishing mean temperature gradients but having non-
Gaussian PDF’s of temperature. Such cases are treated
in Castaing et al. [16] and Ching and Tu [22]. The source
of the exponential PDF of temperature there is plausibly
explained by Castaing et al. as the intermittent aspira-
tion events of the mixing zone near the boundary that
obey a Poisson distribution.]

To proceed with the calculus, we need an expression
of p(y,z;r) for arbitrary r. We adopt extensively the
procedure relating p(y;r) to p(y; A™!) developed in the
theory of the 3D binomial Cantor set model [10]. Then
we may have

Py, z;7) = //e""(e ny+rInz)[49, k; A7)0 d/[(27)2yz], )
with
$(0,k;471) = //e*‘e tmytelnp(y, z; A7) dy dz
= A[ei®nB+x1nD) 4 (i(0 InCtrlnE)] 4 (1/3 _ ))[eH6 InB+xInF) | ;i(0 lnCtn lnG)| (8)
which is a joint characteristic function of Iny and Inz, and 2 = —Inr/In A. After double binomial expansion of ¢

(where € is assumed to be a natural number), we arrive at

P(y,zim) = D aCrd*(1/2 = M) * 3", Cra_xCrmd(y — B™C"™)§(z — D'E*-IFmGRk—™), (9)
k I,m
Thus it is easy to obtain

pa(Tr) = (27) 72" aCud*(1/2 = N)* 3~ 4 Ci 0 kCim exp[~T2 /(25%,)]/ Skim,
*

l,m
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FIG. 2. The PDF of the normalized temperature increment
for r = 0.0108, the normalized shortest length in the inertial
range for Ry = 852. The squares are experimental values by
Antonia et al. [9] and the solid line shows the present result.

with
Skim = r1/3(Bl+mcﬂ—l—m)—1/6(D1Ek—lFmGQ—k—m)l/2_
(10)

It is not restrictive to assume that the variance of P(v)
is unity, since we are interested in 7, finally normalized
by its root mean square, which is obtained from (10) as

(Tr2>1/2 — Tl/a[A(B_1/3D + C—l/SE)
+(1/2 = A(B"Y3F + C73q)%2. (11)

In this theory p3(7,) does not depend on Reynolds num-
ber and Prandtl number, until » reaches either the Kol-
mogorov microscale 7 or the counterpart for the temper-
ature field 9. Therefore it is suitable for the inertial-
convective range in isotropic turbulence.

In Fig. 2 we can see a p3(T,) compared with the ex-
periment of Antonia et al. [9], which was performed for
R, = 852 (R, is a Taylor-scale Reynolds number); here
r is taken as the shortest scale in the inertial range they
measured. Although the experimental result somewhat
lacks symmetry, accordance seems to be good. The the-
ory predicts inflection points in the PDF at both sides
for such a small r. This feature may remain problem-
atic. At present, this tendency seems to be unavoid-
able so long as we adopt a 3D tetranomial Cantor set
model which can derive reasonable temperature struc-
ture functions. In order to ensure this fact, however,
a high precision in any device would be necessary since
the inflection points appear for the normalized T, = £+10
with logiops(T.) < —3; the points are further estranged

downwards with less probability as r becomes smaller.
J
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FIG. 3. The PDF of the normalized temperature gradient
for Ry = 41 and 5. Thoroddsen and Van Atta’s experiment
[20] is shown by squares for R\ = 41 and triangles for R) = 5,
respectively. The solid lines show the present result for both
cases.

We note here that the PDF of (normalized) temper-
ature itself in the same experiment, which was shown
together in Fig. 1 in [9], is nearly Gaussian, although it
has some asymmetry. This justifies our assumption that
P(v) is Gaussian, at least, to the first approximation.

It is also interesting to compare the theory with the re-
cent experiment of Thoroddsen and Van Atta [20], who
showed the PDF of a temperature gradient for Ry = 41
and 5 with the evidence of near-Gaussianity of the PDF
of temperature itself in the absence of mean tempera-
ture gradient (as described above). For this purpose,
we assume that the PDF of the normalized temperature
gradient is equal to that of the normalized temperature
increment for r = 7. Hence the PDF can be calculated
using the relation n = aR;a/ %, where a is 153/4 according
to Tennekes and Lumley [23]. The result is shown in Fig.
3. It is rather surprising that the agreement of theory and
experiment is so good again, if we consider that we hardly
have an inertial range in these cases. This suggests that
such a scale similarity as assumed with (1) and its equiv-
alent (4) holds for a broader range of r and Rj than ex-
pected. This is consistent with the fact revealed by Fig. 3
in [21,24] that the scaling law represented by generalized
dimensions for energy dissipation in isotropic turbulence
D(q,0) [and so, probably, its extension D(g,p)] holds far
beyond the inertial range. Also it has been assured by
Chen [25] in forced isotropic turbulence that generalized
dimensions are almost independent of R), even if it is
much smaller than 100.

We can calculate the kurtosis of the PDF by means of
(10);

<T;1) = Z QCk/\k(l/2 - A)n_k Z £Cl Q—kasszlm
k

lym

=3r*/3\(B~*/3D* + C™*/*E?) + (1/2 — \)(B™**F? + C™*/*G?)]%, (12)

and therefore
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(T /(T?)? = 3,’,—logA{[A(B"/3D2+C'2/3E’)+(1/2—A)(B‘2/3F2+C‘2/3G2)]/[,\(B‘1/3D+C*‘/3E)+(1/2—A)(B‘1/3F+C_‘/3G)]3}

— 3,'_—0.2987

If the real kurtosis is different from this, either the model
or the purely Gaussian form of P(v) may be doubted.
The values of kurtosis of any curves in Figs. 2 and 3
were not pronounced in the papers [9,20]. But recently
Thoroddsen and Van Atta [20] informed the author in
a private communication that the estimated kurtosis for
Ry=41 and 5 in Fig. 3 were, respectively, 8.2 and 3.9,
while the corresponding values based on (13) are, respec-
tively, 8.6 and 3.4. Considering unavoidable experimen-
tal errors, the accordance seems to be very good. Al-
though the estimated kurtosis in Fig. 2 is unavailable
yet, the apparent similitude of theory and experiment is
encouraging to the same degree as in Fig. 3. Just re-
cently, Antonia and Zhu [26] measured the r dependence
of kurtosis of temperature increment as well as velocity
increment at the same time in turbulence in a circular
jet for Ry = 250 and in an atmospheric turbulence for
R, = 7600, and they obtained the r dependence with
the average exponent of —0.3 in the inertial range for
both cases. This indicates that the exponent of (13) is

(13)

[

almost valid in the inertial range. [At the same time
they obtained the r dependence of kurtosis of velocity
increment with the exponent of about —0.1 in the iner-
tial range, which is within the currently accepted value,
—0.09 ~ —0.12 [27]. The 3D binomial Cantor set model,
on which the present theory is based, predicts the ex-
ponent as —0.0917 after a similar analytical calculation
using the p3(Au,) given in [3].]

Thus it may be concluded that the present simple
approach to the PDF of a temperature increment in
isotropic turbulence expressed by (6) works considerably
well to describe the average nature in some region of r
covering the inertial range, insofar as the turbulent tem-
perature field with a Gaussian PDF of temperature itself
is treated. If a possible deviation from Gaussianity of
P(v) (depending on 7, y, and z in principle) is taken into
account from the more exact point of view which eventu-
ally goes off the RSH, the theory would have a possibility
of refinement and extension.
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